Skip to main content

OSPF Options Field


OSPF Options Field




  • DN = Down bit : used in MPLS Layer 3 VPNs. If a route learnt from a customer network via OSPF is advertised across a BGP / MPLS VPN using Multiprotocol BGP, and is advertised back to a customer network via OSPF, there is a possibility of a loop to occur in which the OSPF route is redistributed back to the VPN service provider network via BGP. The DN bit prevents this type of routing loop.
  • O = The “O” bit is set when the originating router supports Type 9,10 and 11 opaque LSAs. Not used in normal OSPF implementations
  • DC = The “DC” bit is set when the originating router supports OSPF over Demand Circuits. Not used in normal OSPF implementations
  • L = Indicates whether the OSPF packet contains a LLS (Link-Local signalling) data block. This bit is set only in Hello and DBD packets.
  • N = The N bit is used only in Hello packets. The N bit is set when the originating router supports Type-7 NSSA-External-LSAs. Neighboring routers with mismatched N bit value will not form neighbor relationship. This restriction ensures that all OSPF routers within an area support NSSA capabilities. When the N bit is set to 1, the E bit must be 0.
  • P = The P bit is used only in Type-7 NSSA-External-LSA headers. Due to this reason, the N and P bits can share the same position in the Options Field. The P (Propogate) bit is set to inform the NSSA ABR to translate Type-7 LSAs into Type-5 LSAs.
  • MC = The MC bit is set when the originating router supports Multicast extensions to OSPF (MOSPF). Again not used in normal OSPF implementations.




The above fields can be found in the packet capture, under OSPF, as below:





OSPF Options Field

Comments

Popular posts from this blog

Checkpoint - Exporting Objects in CSV format

Be it a Network Operations Manager, Security Architect or a Security Auditor, the people up the hierarchy always harangue the Security Engineers to compile the list of firewall objects or rules or policies or the traffic statistics and so on.. This can turn out to be quite hectic especially if there are no built in features to systematically provide the output in a "layman-readable" format. Come, Checkpoint's "Object Explorer..."  which not only provides the output in the "layman-readable" format, but also provides in-built filtering mechanisms, thereby ensuring that the Security Engineer doesn't have to rely on Google for building his scarce Microsoft Excel data filtering skills. The following screenshots will show how easy it is, with Checkpoint R80.10 to generate the firewall configuration inventory. On the SmartConsole Unified Portal, navigate to Menu >> Open Object Explorer... Select the Categories you wish to see in your output: Click o

MITRE ATT&CK - Kerberos Vulnerabilities and Security

From the previous post, the summary of Kerberos authentication process is as below: For the initial authentication, the user’s client machine sends a request to the KDC  Authentication Service (AS) . The request includes details like the user’s username, and the date and time. All information except the username is encrypted using the hash of the user’s password. The KDC AS uses the username to look up its copy of the user’s password hash and uses it to decrypt the rest of the request. If the decryption is successful, that means the client used the correct password hash and the user has successfully authenticated. Once the user is authenticated, the KDC AS sends the user’s client a  ticket granting ticket   (TGT) . The TGT includes a unique session key and a timestamp that specifies how long that session is valid (normally 8 or 10 hours). Importantly, before sending the TGT, the KDC encrypts it using the password hash for a special account, the  KRBTGT account.  That password hash is s

Tejas Jain - GCP Constraints & Random Facts

1.  Google Cloud Interconnect Security Cloud Interconnect does not encrypt the connection between your on-premises network and Google's network. Cloud VPN cannot be used with Dedicated Interconnect For additional security, use application-level encryption or your own VPN 2. While using Cloud CDN, the default time-to-live (TTL) for content caching is 3600 seconds = 60 mins 3. Cloud NAT sends only the translation logs and error logs to Cloud Logging service. 4. GCP Dedicated Interconnect - On Premises network device requirements:     10-Gbps circuits, single mode fiber or 100-Gbps circuits, single mode fiber     IPv4 link local addressing     LACP, even if you are using single circuit     EBGP-4 with multi-hop     802.1Q VLANs 5. While using Cloud VPN, the recommended MTU to be configured on the peer VPN  gateway = 1460 bytes 6. Each instance must have at least one network interface. The maximum number of network instances per instance is 8, depending on the instance's machine